美国2023财年国防预算计划为阿利伯克级驱逐舰提供22亿美元。图为正在维修的阿利伯克级“菲兹杰拉德”号驱逐舰。
近期,美国国会参众两院先后批准通过2023财年《国防授权法案》。根据这份法案,美国明年的国防预算将达到8580亿美元,创历史新高。分析人士认为,在当前经济状况不佳、财政赤字面临失控的情形下,美国仍大幅增加国防预算,不仅充分暴露其穷兵黩武的本质,也将对未来国际安全形势产生不容忽视的影响。
加大前沿军事技术研发力度
据悉,美国此次国防预算投入的重点领域包括人工智能、军用5G技术、量子计算与加密运用等,这些也是构成美军“联合全域指挥控制”作战概念的关键性技术。通常情况下,美国的国防预算开支包含两大部分。一部分由美国国防部支配,用于保持美军内部运转、维持美军全球军事行动、采购武器装备、开展颠覆性军事技术研发等,另一部分由美国能源部等单位支配,主要用于美核武库的维护和升级改造等。在此次公布的2023财年国防预算中,美国将用于颠覆性军事技术研发的经费提升至1301亿美元,比2022财年的1120亿美元增加181亿美元,增幅超过16%。
此外,由于美国拥有庞大的核武库,在2023财年国防预算中,核武器预算依然处于历年最高。美国计划投入63亿美元建造哥伦比亚级战略导弹核潜艇,投入50亿美元打造B-21轰炸机,投入36亿美元研制新一代陆基洲际弹道导弹,以不断提升“三位一体”核打击能力。同时,美国计划投入48亿美元用于升级核指挥控制系统,强调发挥战术核武器潜在的实战运用可能。
借口“大国竞争”提升战备能力
近期以来,美国先后发布《国家安全战略报告》《国家防务战略报告》等一系列战略文件,声称由于竞争对手的综合国力不断发展,导致美国的相对优势不断缩小,并强调应对“大国竞争”仍将是美国未来一段时期的主要任务目标。
从2023财年国防预算的分配可以看出,美国借口“大国竞争”提升战备能力的举措具有明确针对性。例如,为加强对俄罗斯的军事遏制,2023财年国防预算中专门列出一项“欧洲威慑倡议”,用以支撑对俄军事遏制活动,其中包括投入47亿美元用于高超音速武器研发,以弥补与俄罗斯“匕首”高超音速导弹的差距。此外,2023财年国防预算为所谓“太平洋威慑倡议”拨付61亿美元,以确保美国在亚太地区拥有足够战略资源和军事能力,具体包括提升驻太平洋地区美军导弹防御能力、部署陆基远程精确打击武器及增强驻太平洋地区美军的前沿部署态势等。
同时,美国还进一步优化美军装备结构体系,重点加大对远近程火力、各军种作战平台、作战网络、防空反导及战场基础设施等针对性战备能力的投入。例如,2023财年国防预算专门拨款80多亿美元采购高优先级弹药,包括1.2万余枚AGM-179空对地导弹、2万余枚精确制导火箭弹、1700余枚MGM-140“陆军战术导弹”、4000余枚远程反舰巡航导弹、2600余枚“鱼叉”反舰导弹、3500余枚“爱国者”防空导弹、6000余枚AIM-120空对空导弹及1500余枚“标准”-6中程防空导弹等。
穷兵黩武危害世界和平
纵观历史,美国一直痴迷于通过武力等手段扩张势力范围,谋求世界霸主地位。过去几十年里,美国一直在制造“假想敌”,幻想自己受到某种威胁,并以此为借口不断制造事端。例如,美国以“反恐”之名,将阿富汗、伊拉克、利比亚、叙利亚等国相继推向战场;美国不顾俄罗斯强烈反对,积极推进北约东扩,频繁对俄进行挑衅,最终引发俄乌冲突。
美国日益频繁的军事活动自然需要庞大的军费作为支撑。事实上,自2018财年起,美国的国防预算一直呈上升趋势,并逐渐进入增长“快车道”。拜登政府执政后,更加强调以技术优势获取装备和作战优势,扩大与竞争对手的军事代差,导致军费开支大幅提升。历史和现实都证明,穷兵黩武是破坏世界和平的最大祸源。可以预见,在持续高额军费开支的支撑下,未来美国的全球军事活动还将更加频繁。而美国这种通过无限增加军费开支来追求霸权和所谓绝对安全的做法,无异于缘木求鱼,不仅无益于地区安全形势,还会引发“连锁反应”,导致新一轮军备竞赛,给未来国际安全形势发展带来极大隐患。
(作者:方晓志,为国防科技大学国际关系学院副教授)
利用光力系统实现非互易频率转换******
记者10日从中国科学技术大学获悉,该校郭光灿院士团队的董春华教授研究组通过光辐射压力实现两光学模式和两机械模式间的相互作用,进而实现了任意两模式间全光控的非互易频率转换。该研究成果日前发表在国际期刊《物理评论快报》上。
光学和声学非互易器件在构建基于光子和声子的信息处理和传感系统中是非常重要的元器件。虽然磁诱导非互易已广泛应用于分立光学非互易器件,但在器件集成化方面仍面临挑战。同时,磁诱导声学非互易由于效应较弱,也难以实现集成的声学非互易器件。腔光力学系统是实现无磁非互易的有效系统之一,在之前的工作中研究组已经演示了基于腔光力相互作用的无磁光学环形器。
在前期工作基础上,研究组研究了单个微腔中光子和声子的非互易转换。利用两个光学模式和两个机械模式通过光力相互作用构成闭环四模元格,这四个模式具有完全不同的频率,分别为388THz、309THz、117MHz和79MHz。研究组演示了四个模式中任意两个节点之间的非互易转换,包括声子—声子(MHz—MHz)、光子—光子(THz—THz)和光子—声子(THz—MHz)的非互易转换。该非互易转换的原理正是利用光力微腔中的多个模式构建人工规范场,通过控制光的相位实现规范场中几何相位,从而可以实现全光控制的灵活的非互易转换。接下来,在该元格中引入第三个机械模式,实现了声子环形器,该环形器的方向受两个独立的控制光相位决定。
据悉,这一研究结果可以推广到微腔内其他的光学模式和机械模式,构建更多节点的混合网络,实现信息在混合网络中的单向传输,这在通讯和信息处理领域具有潜在的应用,特别是在光学波分复用网络和用于连接不同频率下工作的分立量子系统。(记者吴长锋)
(文图:赵筱尘 巫邓炎)